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Abstract. An analytic solution is found for the most simple but realistic model 
of hot-electron transport in two dimensions. Only emission of lon~tudinal optical 
phonms is taken into account. Results are presented for the electron momentum 
and energy distribution functions, the average veloei ty and the electron temperature 
parallel and perpendicular to the electric field. 

1. Introduction 

The study of non-linear transport [l] is of paramount importance in modern elec- 
tronics. With the decreasing size of electronic components, voltages are applied over 
smaller distances which results in larger electric fields. Transport will occur under 
conditions of high electric field and will be non-linear. 

The equation governing transport under high (but not extreme) electric field is 
the Boltzmann equation. This is a non-linear integro-differential equation. The most 
popular way to solve this equation is by the Monte Carlo method [2], which is a purely 
numerical technique. 

In a polar semiconductor with no impurities and lattice imperfections the only 
important process limiting the electric conductivity at zero temperature is the emission 
of longitudinal optical phonons (LO phonons). Under the action of an electric field the 
electron gains energy and will emit an LO phonon when its energy is larger than the LO- 
phonon energy hwLO. The latter process is inelastic. The electron velocity falls hack 
to around zero and the process of acceleration can start again. The average velocity of 
the electron is about half the critical speed, which is given by vLo = !2”w~~/m’)’’~, 
and depends very little on the electric field (m* is the electron effective mass). Thus 
a saturation [3] in the average electron velocity versus the field is found. This type of 
electron transport leads to a pure streaming motion which has an anisotropic electron- 
momentum distribution. This was first suggested by Bray and Pinson 141 and later 
elaborated by Vosilius and Levinson [5] who introduced a ‘needlelike’ distribution for 
the electron momentum. 

The Boltzmann equation for the situation of zero temperature was solved qu&- 
an3lyticdy for the case of electrons moving in three dimensions (3D) by Devreese and 
Evrard [6]. They invoked the so-called ‘two-circle’ model approximation. The basic 

Then the 
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idea is to separate the momentum space into two polaron circles) with 
radius p1 = ( 2 m * ~ L 0 ) i / 2  and pz = 
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Boltzmann equation can be solved under the assumption that there is a negligible 
probability of the electron reaching the second polaron circle. In [7l an asymptotic 
expression of the results of [6] was presented. 

The aim of the present paper is to present a solution of the Boltamann equation for 
transport in two dimensions (2D) in the extreme situation of low electron concentration 
at zero temperature and in the absence of impurities and lattice imperfections. In this 
case non-linear effects will be most pronounced and the electron velocity will only be 
limited by the process of LO-phonon emission. There is no thermal averaging and no 
redistribution of the electron energy due to electron-electron collisions. We show that 
under these limits aquasi-analytic solution of the Boltzmann equation is possible. The 
present solution is useful: (i) in testing various approximations for non-linear electron 
transport, and (ii) as an extreme model for non-linear transport in two dimensions. In 
this paper the electron distribution function is studied within the 'two-circle' model 
adopted to the ideal twc-dimensional situation. The analytic results are presented in 
section 3. The present results for the electron average velocity and average electron 
temperature are compared in section 4 with a solution of the Boltzmann equation by 
the Monte Carlo technique. 

2. The transition and scattering rate for interaction with LO phonons 

Applying Fermi's golden rule to the Rohlich Hamiltonian, for a perfect 2D electron 
system [8] with only LO-phonon interaction in a parabolic band, we find for the tran- 
sition probability P(p' ,p)  from state Ip,,p,) to state lpL,&) 

where the minus (plus) sign refers to absorption (emission) of a phonon, which is 
proportional to the Lo-phonon occupation number: No = I/exp(hwLO/kBT - 1). (I 
is the electron-phonon coupling constant. Above and in the following we use units 
such that h = m* = wLo = 1. 

The scattering rate for a state Ip.,p,) is denoted by X ( p )  and becomes 

which after performing the summation results in 

where K ( k )  is the complete elliptic integral and @(I) the theta function. a is the 
F'rijhlich coupling constant which is 0.068 for GaAs. X-(p)  (X+(p) )  refers to the 
process of emission (absorption) of an LO phonon. In this paper we neglect size effects 
(the finite width of the ZD electron layer) in the scattering rate which were studied 
e.g. by Leburton [9] and Ridley [lo]. 
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3. The electron momentum distribution function 

The Boltzmann equation in the presence of an electric field E along the 2 direction 
is, for non-degenerate electrons, given by 

where P(p',p) is the probability that the electron males a transition from the state 
Ip:,p;) to the state Ip,,py) and is given by (1). Further we introduce 

A@) = P(P,  P') dp' 

which is the scattering rate for a state Ip,, p,) and is given by (2). 
In the following we limit ourselves to the situation of T = 0 where an analytic 

solution of the Boltzmann equation can be obtained. Because of the specific nature of 
the electron-Lo-phonon interaction, the electron momentum distribution between two 
polaron circles is only coupled to the distribution function in adjacent circles. Under 
the assumption that f (p=, py) = 0 when pa 2 4, which is satisfied for electric fields 
that are not extremely high, the Boltzmann equation in the region pa  = p,' +pya 2 2 
takes the simple form 

where X-(p) is the scattering rate for emission of LO phonons a t  T = 0 K and 
f>(pz,pv) is the electron distribution between the two circles 2 < pa < 4. Thus 
only 'scattering-out' into the inner circle with emission of a LO phonon is considered. 

The electron momentum distribution located inside the first polaron circle, i.e. 
p2 5 2, is determined by the Boltzmann equation 

where f,(pb,pL) is the solution of (4). Electrons in the inner circle can only reach the 
outer circle through the acceleration effect of the electric field. 

Solving equation (4) we obtain for the momentum distribution function in the strip 
2 < p 2 < 4  

where C is a constant which is determined by the continuity of the distribution at the 
polar circle, and A = 2fia/eE.  

The function given by (6) falls off very rapidly with increasing p .  Therefore the 
logarithmic term in (6) can be expanded in powers around p = 4. To first order this 
leads to 

f > ( P , 4  = c e x ~ ( e ~ A / 2 ) e x ~ [ - A g ( e ) ( ~ / J Z -  111 (7) 
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with g(0) = (r-28sin 0)/2cos8, and where now we have introduced polar coordinates 
with 0 the angle between p and the z direction. 

we rewrite ( 5 )  as follows: 
In order to obtain the momentum distribution function inside the circle 9 = 2, 

We know that j,@,e) falls off very rapidly with increasing p, which implies that the 
main contribution to the integration of (8) comes from the region p <i: 1. With this 
approximation the momentum distribution function inside the circle p2 = 2 is obtained 
as 

where erf (z) is the error function and the upper and lower symbols (i) refer to 
p, 2 0 and p, 0, respectively. One of the integration constants was  determined by 
the condition that the distribution function has to be zero when p, -+-CO. 

The constant C can be obtained from the continuity condition f.,(d,e) = 
f < ( f i , O )  on the first polaron circle p2 = 2. Finally we find for the momentum 
distribution function 

P2 22 

where we defined f<(O,O)/C = J;/’d4 e x p ( @ A / 2 ) / m ,  and 

4. Numerical results and discussion 

In figures l(a) and I(&) the momentum distribution function obtained within the 
present ‘two-circle’ approximation are shown for the different values of AEM = 
2 4 a / e E  and in the direction parallel (figure l(n)) and perpendicular (figure l(b)) 
to the electric field. For GaAs the values AEM = 1000,200,50,20 and 10 correspond 



Hot-electron distribution of ZD electrons 1787 

2 S  I ! ,  I I , , , , , , , , I , ,  
Ct4068 1.31 

-Pyla 
Figure 1. The momentum distribution function normalized to f ( 0 , O )  for different 
values of AEM = Z f i o f e E  at T = 0 K. The didribution function is plotted in 
(a) the (p,,O) plane (i.e. along the electric field) and ( b )  the (O,py) plane (i.e. 
perpendicular to the electric field). 

to the electric fields, E = 12.58, 62.9, 251.6, 629 and 1258 V cm-', respectively. The 
momentum distribution function f(p,,py) is shown in figure 2 for: (a) low electric field 
(AEM = 200), (b) intermediate field (AEM = 50), and (c) high field (AEM = 10). 
From figures 1 and 2 it is apparent (i) that the distribution function goes to  zero at 
the second polaron circle for the above values of AEM, and consequently our starting 
assumption of f,(p,,p,,,) FII 0 when pa > 4 holds. Since equation (10) is valid up to 
AEM = 10, this 'twc-circle' model is more suitable for the case of zD than for the 
3D situation where the 'two-circle' approximation breaks down for AEM smaller than 
20 as stated in [7]; (ii) that similar to the 3D case the smaller the electric field the 
more the distribution function approaches a rectangle in the I direction and a delta 
function in the y direction. In the limit of zero electric field we found the simple result 

where e(r) = 0 (I < 0), 1 (I > 0); (iii) that compared with the 3D case, as presented 
in [SI and [7], for the same values of AEM the distribution is sharper in ZD than in 3D. 
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- . <  

Figure 2. The momentum distniution functica f(p,,py) n o d z e d  to f(0,O) (YI 

obt-ed within the preeent model for: (e) high electric field, AEM = 10; (a) inter- 
mediate field. AEM = 50;  (c )  low field AEM = ZOO. 

In figure 3 the contours of constant f(p,,py) are shown which correspond to the same 
values of electric field as in figure 2. The distribution function drops sharply past the 
first polaron circle p = fi. With decreasing electric field the distribution function 
becomes more concentrated inside a narrow range of momentum space. 

The electron energy distribution function can be obtained from the momentum 
distribution function through 

I(€) = j dP, J dPy f(P,,Py)G - (PEa + PV2)l (12) 

which can be reduced to one integration 

f ( c ) = Z J  0 dz 

The numerical results for the energy distribution function corresponding to those of 
figure 2 are shown in figure 4(a). In order to bring out the non-Maxwellian shape 
of the electron distribution more clearly we show in figure 4(b) the same distribution 
function on a logarithmic scale. Note the rapid decrease of the energy distribution for 

> LL0. Inserting equation (7) into (13) we find f , ( ~ )  - exp(-a& for z > fw,, 
where a - AEM is large in low electric fields. 

(13) 
f ( z J m ,  J; - 2 2 )  + f(-zd-, J; - 2 2 )  

Jm 
(11. 
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Figure 3. Contour plots of constant momentum distribution function f(p.,py) 
for the same parameters as in figure 2 for: (4) AEM = 10, ( 6 )  AEM = 50 and 
(c )  AEM = 200. 

Given the distribution function f ( p , , p , ) ,  all physical observables of interest can 
be obtained by numerical integration. In figure 5 we show the results for the electron 
average velocity. The electron temperatures parallel and perpendicular to the elec- 
tric field defined by = ( p S a ) / ( 2 k B m ' )  and T' = (pYz)/(ZkBm*), respectively, are 
shown in figure 6 in units of T, = f iwLo/kB.  The average (. . .) is over the electron 
momentum distribution function. For comparison the Monte Carlo results are given 
by the symbols, this corresponding to an 'exact' numerical solution of the Boltzmann 
equation. In the limit of a n  infinitely long simulation time the Monte Carlo approach 
will lead to  the exact result. Note that for the present model, at 2' = 0, there is no 
linear regime. The velocity approaches vLo/2 in the limit E -+ 0. The reason is that 
for velocities v < vLo the electron behaves like a free particle and under the action 
of an electric field the electron performs an accelerated motion until U = vL0. This is 



1790 W Xu et a1 

a=oo68~ AEM; 200 

0.04 

. . . . . . . . . . . . .  

~~ 

.I" ................... 

Figure 4. (a) The normalid energy distribution functicn f(c)  versus the electron 
energy c for the samc values of AEM as in figure 2. (a) the eane energy distribution 
function f(c)  shown on a logarithmic scale. 

also the reason why 1 approaches 

which is non-aero and independent of the electric field. We used the fact that w ( t )  = 
eEt for w < vLo and t o  = vLo /eE .  Of course TL i 0 for E + 0. 

5. Conclusion 

An analytic solution of a model system for hot-electron transport in a non-degenerate 
two-dimensional electron gas was presented in the case of zero temperature. This cal- 
culation can be applied to high mobility and very low electron density heterostructures 
at low temperature and high electric field where transport is non-linear and dominated 
by Lo-phonon emission. 
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Figure 5. The average electron velocity BS a 
function of the electric fidd The results of the 
't-cide' model are shown by the full came 
and the full circles are the results from a ex- 
act solution of the BoltzmaM equation obtained 
with the Monte Carlo method. For GaAs VLO = 
4.40 x lo' cm s-' and Eo = 9.25 x lo' V m-'. 

Figure 6. As r i  5, hut for the average elec- 
tron temperatun pardlel (Til) and perpendicular 
(TA) to the electric field. For GaAs TD = 425 K 
and Eo = 9.25 x lo1 V on-'. 

The results of this paper can also be used to test various approximations for non- 
linear electron transport, i.e., the displaced Maxwellian approach. A comparison of 
the results of the 'two-circle' model was made with the results of a Monte Carlo 
simulation. We presented an explicit analytic expression for the electron momentum 
distribution function which was also plotted. From this function the energy distribu- 
tion function, the average electron velocity and average electron temperature parallel 
and perpendicular to the electric field was calculated. It was found that for the present 
zero-temperature model the non-linear regime extends to zero electric field. 

Acknowledgments 

One of us (FMP) is supported by the Belgian National Science Foundation. WX 
was supported by the Supercomputer Project of the NFWO (Nationaal Fonds voor 
Weteuschappelijk Onderzoek). 

References 

[I] See M 1981 Physics of Semiconductor Deviccr (New York: Wiley) 
[2] Jacoboni C and &&mi L 1983 Rev. Mod. Phyr. 55 645 
[3] Shockley W 1950 Bell Sydfem Tech. J .  SO 990 
[4] Bray R and Pinson W E 1964 Phys. Rev. 136 A1449 
151 Voeilivs I I and Levinson I B 1966 Sou. Phya.-JETP 23 1104 
161 Devreese J T and Evrard R 1976 Phys. Sfdur Solidi b 78 85 
[7l Peters F M and Devreese 1 T 1981 Phys. Status Solidi b 108 K23 
[SI Sak J 1972 Phya. Rev. B 6 3981 
[9] Lehurtm J P 1984 Appl. Phys. 56 2850 
[lo] Ridley B K 1982 J.  Phys. C: Solid S f a f r  Phyr. 15 5899 


